“IEMS可以认为是第四代能量管理系统(EMS),可以解决多能流网络的最优控制问题,即通过
多能互补、源网荷协同实现安全供能前提下的效益最大化。”
1. 能源互联网从“概念年”走向“落地年”
去年和前年我认为是
能源互联网的“概念年”,那时候大家还在讨论“什么是能源互联网”,“为什么要做能源互联网”,“能源互联网可能会长什么样子”。但是,今年已经进入到了能源互联网的“落地年”,大家都在深入地讨论应该怎么去做。国家能源局、科技部有很多支持项目,资金投入量很大,比如今年国家能源局公布的首批“互联网+”智慧能源(能源互联网)示范项目。
2. 追求效益最大化的最优控制问题
如何通过“多能互补、源网荷协同”实现安全供能前提下的效益最大化,这是在能源互联网示范项目的实施中,专家们都很关心的一个焦点问题。这实现起来并不容易,从技术层面来看,这个焦点问题可归结为复杂的多能流网络的最优控制问题。这个最优控制问题是要追求效益的最大化,效益=收入-费用,约束前提是安全供能。这里的收入包括了售能、售服务,费用有购能、购服务等。优化的手段分布在冷、热、气、电、水、交通,源、网、荷、储等各个环节。约束条件包括供需平衡、运行的物理范围,以及供能安全等。这个焦点问题最终是通过一套系统来实现的,这套系统就叫做多能互补综合能量管理系统(Integrated Energy Management System),简称IEMS。
3. EMS的发展历史
IEMS可以认为是第四代能量管理系统(Energy Management System,EMS)。EMS是在电网调度控制中心应用的在线分析、优化和控制的计算机决策系统,是电网运行的神经中枢和调度指挥司令部,是大电网的智慧的核心。我们课题组研究EMS已有30多年。首先回顾一下EMS的历史。
第一代EMS出现在1969年以前,叫做初期EMS。这种EMS仅包含SCADA供能,只是把数据采集起来,没有实时网络分析、优化、协同控制,网络分析和优化主要靠离线计算,属于经验型调度。现在的园区管理,绝对不能停留在经验型调度的水平上,而是需要精益化的管理,提高核心竞争力。
第二代EMS出现在20世纪70年代初到21世纪初,叫做传统EMS。这一代EMS的奠基者是Dy-Liacco博士,他提出了电力系统安全控制的基本模式,发展了实时网络分析、优化、协同控制,所以在上个世纪70年代,EMS得到了迅速发展。我国1988年完成四大电网调度自动化系统的引进,之后完成消化、吸收、再创新,开发出自主知识产权的EMS。当时清华承担了东北电网EMS的引进、消化和吸收,因为当时东北是重工业基地,东北电网的网调是最大的,全国负荷最大的就在东北。目前国内的EMS已基本国产化,这一时期的调度已经属于分析型调度,上升到了新层次。
第三代EMS是源网荷协同的智能电网EMS,出现在大规模可再生能源发展之后,这时候还没有多能横向的协同,只有源网荷的协同。针对大规模可再生能源不可控、波动性的特点,需要大量的灵活性资源,从源-输,转向荷-配,这时候的EMS可集成利用各类分布式资源,发展分布自律-集中协同架构,从源、网到荷,都有相应的EMS。源有风电场和光伏站的EMS,荷有电动汽车、楼宇和家庭的EMS,网有输电、配网、微网的EMS,这些EMS首先是自律,然后通过通信网联结在一起形成协同,这时候就可以称为EMS家族了,EMS家族有很多成员,不同成员有不同特点,共同实现智能电网的源网荷协同。
第四代或者说下一代EMS,称之为多能互补的综合能量管理系统,也就是IEMS。这里的综合是把各种能源集成和综合。由于各类能源割裂,综合能效低,所以需要综合和梯级利用;同时由于灵活性资源严重不足,大量弃风、弃水、弃光、所以需要拓展到多种能源互联,从多种能源里面找到新的灵活性资源,来支持大规模可再生能源的消纳;通过效益最大化的综合优化调度,在保障供能安全和优质的前提下,降低用能成本,提高综合能源服务的经济效益。
下图给出的就是IEMS的示意图。
它像一个大脑,底下是一个综合能源系统,冷、热、气、电、水、交通,各种能流,叫多能流。前些天我在会上介绍了这个系统,大家公认在世界上还没有先例。今天上午在清华发布的最新成果“园区多能互补综合能量管理系统”就是这世界上第一个IEMS产品。我们课题组将做了30年的电网EMS拓展成IEMS非常困难,学电的人不懂热、气、交通,这时候就需要学习热能、燃气和汽车等其他学科的知识,我们团队最近五年一直在快速地学习,终于成功研制出了IEMS。当然,如果没有之前30年电网EMS的研发经验,再用10年也做不出来。
4 IEMS的主要功能
(1)多能流SCADA
用于实现完整、高性能的准稳态实时数据采集和监控功能,是后续预警、优化和控制等功能的基础,并利用系统软件支撑平台提供的服务。多能流SCADA是IEMS的“感官系统” ,基于能源物联网,采集多能流数据(采样频率:电为秒级,热/冷/气为秒级或分钟级),完成相应的监控功能,并将数据提供给状态估计及后续高级应用功能模块,接收系统运行调控指令,并通过遥控/遥调信号下发给系统设备执行。多能流SCADA的功能界面包括能流分布、场站接线、系统功能、综合监视、操作信息、分析评估、智能报警等。
(2)多能流状态估计
由于多能流传感网络测点分布广、量测种类多、数据质量低、维护难度大、成本敏感度高,所以出现采集数据不全、错误的情况在所难免。因此多能流网络需要状态估计技术提供实时、可靠、一致、完整的网络状态,为IEMS的评估和决策提供基础。多能流状态估计通过补齐量测数据、剔除坏数据,可以实现坏数据的可估计、可检测、可辨识,最终达到减少传感器安装数量、降低通信网络复杂程度、降低传感网络的投资和维护费用的效果,通过提高基础数据的可靠性来提高评估与决策的可靠性,降低能源网络运行事故风险。
(3)多能流安全评估与控制
安全的重要性不言而喻,而能源系统的安全尤其关乎生命和财产安全。一方面需要建立“N-1”安全准则的概念,这个概念就是去关注最薄弱的环节,并且做出预案。上午我们成果的发布会上举了一个例子,是说台湾近期的一次大停电是由气的阀门故障导致的,那么那个阀门就是气-电耦合综合能源系统的一个薄弱环节。所以一定要时刻关注薄弱环节,出现问题一定要有预案,否则会面临巨大的风险。另一方面要关注园区交易关口的安全控制,园区关口的容量配置和运行的成本是个关键问题,一方面是容量越大变压器的投资成本越高,另一方面容量越大电网公司收取的容量费也越高。比如:50兆瓦容量和100兆瓦容量投资和运行的总成本相差很大,如果设计成50兆瓦的容量,万一实际容量超过了,会烧掉变压器。该怎么将关口潮流控制在50兆瓦以内,这就是安全控制问题。在多能流系统中,不同能源系统相互耦合和影响,某一部分的故障和扰动会影响到多能流系统的其他部分,有可能造成连锁反应,因此需要进行耦合分析。可以利用热、气等系统的惯性提供的灵活性,为电系统的安全控制提供新手段,可以利用这些新手段,做协同安全控制。
(4)多能流优化调度
这里有几个重要的概念:启停计划、日前调度、日内调度、实时控制。一个园区或者是城市的三联供、燃气机组、电锅炉都是可以启停的,有一些设备停下来可以降低成本,这就可以根据确定日前的最优启停计划进行启停。然后在启停基础上调节多少出力,这是日前调度。而日内调度是由于风光出力变了、负荷变了,所以日内需要再调度,以此来适应新的适合的发电出力,维持最优的出力和负荷的平衡。最后到了秒级还要进行控制,如对于网络安全问题、调压问题、调频问题,都需要进行实时控制。调度的时间尺度较长,一般以15分钟为单位,控制是以秒为单位,时间尺度较短。在多能流系统中,其可调控的手段比单一能源系统要多,从源网荷储的角度出发,可实现冷、热、气、电等的综合调度和控制。
(5)多能流节点能价
一个园区或者是智慧城市,一定要考虑建设一个非常好的内部的商业模式。内部的商业模式不是对外的,不是对上的,而是对园区内用户的,这样的一个商业模式应该是什么样?最科学的模式就是节点能价的模式。节点能价的模式首先需要通过计算确定各个地方的用能成本是多少,用能成本包括四个部分:一是能量发出来的成本;二是传输损耗的成本;三是网络阻塞的成本;四是多能耦合的成本。然后需要科学精准地计算各个结点的能价,包括冷价、热价、气价和电价,不同时刻、不同地点的价格,只有通过精准计算,才能使园区总的用能成本显著下降,因为可以用价格的信号来引导用户用能。这样整个园区的用能成本则可以通过柔性的能价手段得到显著下降。
节点能价根据供应商的生产边际成本制定,当线路出现阻塞时,各节点的价格根据所在位置的不同而呈现不同的价格,实时价格可以激发用户侧的灵活性。节点能价科学体现了成本,有利于建立公平的内部市场机制。
(6)多能流虚拟电厂
虚拟电厂是对上级市场的商业模式,整个园区或城市都可以变成一个大的虚拟电厂,尽管不是物理电厂,但是有很多储能和冷热电三联供等分布式电源,联合起来就可以变成一个大的可调节的市场主体。因为分布式资源容量小、数量多,市场难以单独管理,通过虚拟电厂的集合,可以通过软件架构实现多个分布式资源协同优化运行,为外部市场提供调峰、调频、调压等服务,有利于总体资源的优化配置和利用。这样的商业模式能够带来很高的经济收益,这在美国已经成为现实。
虚拟电厂在优化调度的基础上,可以将园区内的分布式电源、可控负荷和储能装置聚合成一个虚拟的可控集合整体,从而园区可以作为一个整体参与上级电网的运行和调度。虚拟电厂协调上级电网与分布式资源间的矛盾,充分挖掘分布式资源为电网和用户所带来的价值和效益,实现与电网的友好互动。
如下图所示是多能流虚拟电厂的内部组成架构
横向来看依次是源网荷储。源侧包括常规的供电设备、CHP机组、燃气锅炉等设备,以及外部电网供电、可再生能源接入;网架分为冷热电等传输系统;荷侧为园区内部的电、热、冷负荷;在储能方面,不同能源子系统均有各自的储能设备。纵向来看依次是电、气、热、冷多能互补运行。不同的能源子系统分别用不同的颜色表示,多种能源转化设备(热泵、CHP、燃气锅炉、溴化锂机组)将不同的能源子系统相耦合。园区内部多种能源形式以虚拟电厂的形式组合在一起综合运行,在保证电、热、冷负荷可靠供应的前提下,实现了能源的梯级利用,提高能效,降低用能成本。并且对于波动性很强的可再生能源而言,综合能源系统具有更多的灵活性,促进了可再生能源的接纳,进一步提高系统经济性。
5 IEMS的应用案例
(1)成都高新西区的“互联网+”智慧能源(能源互联网)示范项目。成都高新西区是约40平方公里的工业园区,IEMS系统对这里进行综合能源的供应与需求分析,实现多能协同优化。以电、气、冷、热等对能源的需求为主,开展基于清洁能源中枢(天然气冷热电三联供、光伏、风电等)的能源互联网示范园区建设,实现对高新西区内天然气、地热能、风光能、蒸汽、冷水、热水、电等能源实施管理。
(2)广州从化工业园区的综合能量管理系统研发和示范项目。这个园区的核心部分大概12平方公里,也是典型的工业园区。工业园的能源格局呈现大容量、多能流、高渗透等特点,具有开展多能协同、多能优化调度等的良好基础条件,是开展“互联网+”智慧能源综合能源服务业态模式示范较为适宜的区域。在园区内建设IEMS系统,提出虚拟电厂和用户需求侧响应模式,实现灵活性资源集群同步化控制技术,最终系统实现部署应用。
(3)广东东莞立沙岛的智慧能源能量运行控制系统研发项目。东莞立沙岛也是约12平方公里的工业园区,立沙岛智慧能源系统分为以下四个层次:第一,热电耦合下的园区能量调控;第二,政策没有放开的情况下,存在约束条件的园区能量管理;第三,政策完全放开的情况下的区域能量管理;第四,未来和大系统之间的交互(交易),打造综合能源供应商。其中能量管理系统的研发分为四个阶段:第一,整体可观,部分可控;第二,整体可控,部分优化;第三,整体优化,部分交互;第四,整体交互,联合优化。
(4)吉林省多能流综合能量管理与优化控制研究项目。吉林省火电机组占比多,没有抽蓄、燃气等灵活调节电源,并且吉林处于高寒地区,冬季供热期长达半年,90%以上火电机组为供热机组,供热期间,火电最小出力超过本省最小负荷,风电消纳压力大弃风问题非常严重,主要原因是供热机组的热-电制约关系和“以热定电”模式显著降低了其调峰能力,挤占了风电空间。怎么用市场的手段来激发多能流的管控和交易,是最具挑战的问题,为此部署了IEMS系统,来研究多能流综合系统的市场交易机制,研究多元市场主体的成本效益,研究并设计示范区域内的用能替代响应,并提出多能流综合能量管理优化控制技术,在解决大规模风电消纳问题的同时实现清洁供暖。