当前位置:能源资讯 » 能源资讯 » 中国能源资讯

能量密度高达450wh/kg!这种量产锂电池怎么做到的?

日期:2022-02-26    来源:储能头条

能源资讯中心

2022
02/26
12:32
文章二维码

手机看资讯

关键词: 锂电池产业园 锂电池项目 锂离子电池

2月16日,有这样一条消息在储能领域炸开:位于美国加州的Amprius(安普瑞斯)公司宣布,第一批商业化450Wh/kg高密度锂离子电池单元已经交货,将用于新一代的高空伪卫星(HAPS)。

450Wh/kg,这是截至目前投入实用的能量密度最高值!不止于此,安普瑞斯已经公布说,不久的将来将推出能量密度为500Wh/kg的锂电池。

正极材料创新已到瓶颈期

先来看看为什么说450这个数字不易得。

据电车汇统计:从2019年第3批目录申报车型到2020年第13批推荐目录,磷酸铁锂电池系统能量密度雷打不动,一直都是161.27Wh/kg。

2022年第1批推荐目录中,除了宇通的一款车型达到了最大值161.29Wh/kg以外,多数厂商依旧在161.27Wh/kg这个数字上打转。

也就是说,磷酸铁锂电池的理论上限已经很难突破。

那么高能量密度的三元电池现状如何?

2021年7月,在工信部最新一批新能源汽车推荐目录中,一汽集团申报了新款红旗E-HS9,搭载的是宁德时代生产的三元电池,系统能量密度高达206Wh/kg。在此批次目录之前,能量密度最高的是国轩高科,为北汽和长安两款车型配套的电池能量密度均超过200Wh/kg,达到201Wh/kg。

也就是说,在目前能够量产的三元电池中,能超过200Wh/kg已经殊为不易。

磷酸铁锂和三元两个词都是针对正极材料而言。从近年来的电池创新来看,一方面是正极材料成本占比很大,另外也是因为锂电池的技术创新主要从正极来进行。

除了正极材料创新,还有电池结构等创新,这方面特斯拉于不久前刚刚量产的4680是典型代表。据官方介绍,新的电池包采用无模组设计,大约有960个(40x24)电池组成,相比上千个2170电池组成的电池包要少很多,因为4680电池的能量密度提升了5倍,达到了300Wh/kg。

负极材料可能突破

既然从正极出发遇到了困境,那么是不是从负极出发来进行技术创新,来提升能量密度?安普瑞斯就是这么做的。

先来了解一下目前锂电池常用的负极材料:

在石墨大规模用作锂电池负极材料之前,负极材料已经经历过两次颠覆式创新。1991年,日本索尼联合旭化成株式会社公布商业化锂电池,当时负极材料采用的是石油焦。后来石油焦被中间相碳微球(MCMB)替代,这是一种从沥青中提取出来的小球体材料。

由于智能手机的深入应用,MCMB生产复杂且效率很低,于是它在负极材料的霸主地位逐渐被石墨取代。由于石墨导电性好,结晶程度高,具有良好的层状结构,十分适合锂离子的反复嵌入-脱嵌,是目前应用最广泛、技术最成熟的负极材料。更重要的是制取方便,不仅有天然石墨,而且人工也可以制取石墨。

现在人工石墨技术已经非常成熟,尤其是我国企业在这方面具有成本优势,使得我国贝特瑞、璞泰来、上海杉杉等负极材料企业占据了超全球80%以上的市场。

生产石墨负极材料的公司几经技术迭代,目前来看,开发的高端产品已经达到了360mAh/g 的指标(璞泰来数据),达到了石墨比容量372mAh/g的理论极限。

也就是说,无论再怎么技术进化,从石墨这里挖到的潜力已经有限。

人们把视线转向了理论比容量比石墨要高的硅基材料。理论上讲,硅基材料比容量能超过4000mAh/g,这是石墨材料的十倍。

但是高容量也带来很大的负面影响。其中最重要的是高损耗,锂离子电池在使用期间,形成回路的锂离子会在负极上结合电子。这个过程相当于锂离子钻进了负极材料,形成的锂结晶会把负极结构挤爆。也就是说,吸收的锂离子越多,带来的能量越大,但破坏得也越剧烈。尤其是硅晶体是正四面体结构(石墨是层状结构),所以更容易膨胀,膨胀率可达到300%。这会让电池变得更加不稳定。

华裔天才的构想

如何克服这个问题,中外科学家都在努力。

去年5月12日,在中国汽车动力电池产业创新联盟2021年度会议上,国家动力电池创新中心交出了一款能量密度高达356Wh/kg的三元锂电池,这款电池采用的就是硅基负极材料。不过该款电池目前处于原型阶段还没有达到量产。

安普瑞斯解决高比容带给电池爆炸风险的方式是使用硅纳米线。

安普瑞斯的硅纳米线技术是在电池极片上直接生长硅纳米线,其在吸收锂原子后膨胀至正常体积的四倍,但不同于一般的硅结构,这种结构的硅材料可以通过轴向膨胀很好的释放应力,不会造成纳米线的龟裂或破损,从而阻止了电极的粉末化。

此外,使用硅纳米线的负极厚度仅为碳材料负极厚度的一半。

根据Enpower的数据,目前特斯拉的Model 3电池是最先进的,能量密度也仅有 260Wh/kg(730Wh/ l)。按重量计算,Amprius锂电池的能量比特斯拉Model 3的电池高出73%,而体积却减少了37%。

这一方案的提出者也就是安普瑞斯的创始人之一,华裔教授崔屹。2007年,还在斯坦福材料科学与工程系担任教职的他,在Nature Nanotechnology上发布了《使用硅纳米线的高性能锂电池负极》的论文,详细阐释了硅纳米线技术在锂电池中的应用。

根据当时的测算,硅纳米线会让电池能量密度上升30%-80%。看到这一可能的风口,风投市场的不少人都下场劝说崔屹将技术商业化。2008年,崔屹与风投合伙人Mark Platshon共同成立安普瑞斯,董事会里面甚至有朱棣文的名字,而朱棣文和崔屹一样都是属于斯坦福学术圈的学者。

虽然安普瑞斯总部在美国,但是产品的商业化生产又回到了负极材料大国中国。早在2014年,安普瑞斯就与无锡工业发展集团合资筹建安普瑞斯(无锡)有限公司,用于硅纳米线的成熟应用和生产。

不过比起当时的规划,安普瑞斯的商业化现实要艰难得多。2021年12月,安普瑞斯宣布,正在努力实现每年数百兆瓦时的电池量产,预计将在2024年开始大规模生产。

来自特斯拉的评判

安普瑞斯曾在 2021年11月8日宣布了405Wh/kg的电池,仅几个月能量密度就达到了 450Wh/kg。去年 12 月,该公司称其370Wh/kg的版本可以在大约6分钟内从0 充电到80%。

安普瑞斯科技公司的首席运营官伯恩斯坦说:“与之前在2021年11月8日宣布的405Wh/kg产品相比,这一进步凸显了我们在提供具有无与伦比的性能的产品方面的路线图的加速。我们专有的Si-NanowireTM平台和我们开发的综合解决方案实现了无与伦比的性能,并继续保持我们的产品领先地位。”

然而这套“完美”的解决方案,依旧存在着高昂的代价。硅纳米线属于纳米材料,生产难度高。并且为了形成稳定循环需要进行预锂化处理。

安普瑞斯2月16日发布消息中的“高空伪卫星”项目,类似高空气球,目前用于商业化的也只有这一个项目。虽然伯恩斯坦是把商业化预期放到了“飞行汽车”和无人机上,甚至规划了500Wh/kg电池的量产。但有媒体认为,安普瑞斯距离降低成本大规模生产还很遥远。

有人认为,安普瑞斯这么着急,是因为投资者等不下去了。这项技术在2020年已经吸引了超过1亿美元的融资,投资人包含美国最大风投公司KPCB、Trident投资公司、VantagePoint投资公司、谷歌前CEO Eric Schmidt、Innovation Endeavors、SAIF Partners、盈富泰克、空客公司。

面对有限的产出,安普瑞斯未来可能会接受特斯拉的帮助。马斯克一面嘲笑说“硅负极电池循环寿命太差”,高容量的400wh/kg电池要在2024年才能前后出现,还称特斯拉与Amprius之间什么都没发生;另一方面又曾在电池日活动背景中加入了硅纳米线结构图作为宣传。有媒体评论说,硅纳米线电池的商业化落地,可能还是需要特斯拉,马斯克对安普瑞斯别别扭扭的态度只是想降低安普瑞斯的筹码,另一方面也是在期待成本的下降。

目前420-450mAh/g 容量的硅基负极材料(由硅基材料与石墨混合而成)市价在11-15万/吨之间,中间值约为12 万/吨,而高端石墨的价格仅有7-8 万/吨。

硅纳米线负极材料的商业化进程依旧受制于成本。

固态电池同为竞争者

与安普瑞斯发布的硅纳米线负极电池一样,近期以来还有一个指向提高能量密度的技术创新方向:固态电池。

一般认为液态锂电池的能量密度达到300Wh/kg已经是非常出色的表现,而固态电池普遍可以达到300-400Wh/kg。

固态电池与目前主流传统锂离子电池最大的不同在于电解质,它是用固体电解质替代了传统锂离子电池的电解液和隔膜。除了能量密度高,由于固态电解质可以抑制锂枝晶、不易燃烧、不易爆破、无电解液走漏、不会在高温下发生副反应等,固态电池具有更高的安全性。

但是,虽然固态电池的优点非常明显,其缺点也是致命的,并直接导致了固态电池的量产困难。由于固态电解质与电极材料之间是以固态状态存在联系的,电极与电解质之间的有效接触较弱。而且离子在固体物质中传输动力低,因而会造成界面阻抗过大的问题。另一个问题依然是成本过高。

固态电池中近期最具爆炸性的一则消息是2月4日晚,固态电池厂商SES登陆纽交所。这家成立于2012年的公司是由华裔科学家胡启朝创办的,在其股东名单上可以看到天齐锂业、通用汽车、上汽集团、吉利集团、韩国SK集团、美国应用材料公司等等众多业界大名鼎鼎的公司,显然众多企业都对它寄予厚望。

另外一则消息是,工信部2月20日发布的《免征车辆购置税的新能源汽车车型目录》(第五十一批),由东风公司技术中心自主开发的东风风神E70固态电池车名列其中,获得免税许可。标志着东风公司率先开始固态电池车量产。

动力电池后续将会怎样发展,让我们拭目以待。但无疑,在正极材料革新还没有大的进展之时,从负极材料等角度进行革新将带来意想不到的成果。



返回 国际能源网资讯 首页

能源资讯一手掌握,关注 "国际能源网" 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发文章

扫码关注

0条 [查看全部]   相关评论

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网
×

购买阅读券

×

20张阅读券

20条信息永久阅读权限

19.9

  • ¥40.0
  • 60张阅读券

    60条信息永久阅读权限

    49.9

  • ¥120.0
  • 150张阅读券

    150条信息永久阅读权限

    99.9

  • ¥300.0
  • 350张阅读券

    350条信息永久阅读权限

    199.9

  • ¥700.0
  • 请输入手机号:
  • 注:请仔细核对手机号以便购买成功!

    应付金额:¥19.9

  • 使用微信扫码支付
  • 同意并接受 个人订阅服务协议

    退款类型:

      01.支付成功截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      02.付款后文章内容截图 *

    • 上传截图,有助于商家更好的处理售后问题(请上传jpg格式截图)

      03.商户单号 *

      04.问题描述