1、常规弹簧连接
• 通过定义仅轴向、各向同性或正交各向异性弹簧,在曲面之间轻松创建自定义弹簧连接。
• 通过添加自定义合规性提高仿真性能和精度。
优点
利用新的弹簧连接功能,实现更简单、更逼真的仿真设置。
2、增强了销钉连接
• 在使用分布式的销钉连接时,提高所有算例的求解性能。
优点
使用改进的销钉连接,提高仿真算例的准确性。
3、优化了大型模型处理能力
• 利用新的 UI 选项排除所有未选定的实体内容,加速算例设置时间。
• 通过删除仿真算例中排除的零件或实体,集中精力研究重要的内容。
优点
凭借简洁的显示方式,轻松设置大型模型或选择边界条件。
4、增强了节点与曲面间具有偏移时相互关联的处理方式
• 避免中间面网格算例中的曲面之间出现间隙。
• 在线性静态、线性动态、频率、扭曲分析、疲劳分析、设计方案和压力容器算例中,通过增强具有偏移时相互关联的处理方式,
提高接触结果的准确性。
优点
执行更精确的仿真算例,并加快求解速度
5、增强了曲面与曲面间相互关联的处理方式
• 在所有线性算例中,通过增强表面与表面相互关联时的处理方式,提高圆柱形、球形和锥形表面的精度和性能。
优点
在保持精确度的前提下,提高可用性。
6、网格性能改进
• 使用高品质网格,在具有大量曲面的相同零件的算例中,尽享增强的网格性能。
优点
加快包含重复零件的大型装配体的网格划分速度。
7、分析塑料零件翘曲的原因
• 通过将整体位移分解为三个源项:不平衡冷却、定向和非均匀收缩,帮助用户对塑料零件翘曲结果进行评估。
优点
轻松识别翘曲原因,为设计和注塑工艺提供指导。
8、增强了缩痕预测
• 用新的求解器替换当前的缩痕求解器,以提高精度。
优点
利用改进的求解器获得更高的缩痕精度。
9、Flow Simulation GUI 改进
• 操作零件较多的模型时,可以体验到优化的 GUI响应速度。
优点
使用大型模型时节省时间。
10、Flow Simulation 性能改进
• 加快分面/细化几何图形的网格划分速度,包括导入的STL 文件内的面。
优点
将导入的几何图形作为 STL文件使用时节省时间。